Current File : //usr/local/share/man/man3/SSL_read.3
.\" Automatically generated by Pod::Man 2.27 (Pod::Simple 3.28)
.\"
.\" Standard preamble:
.\" ========================================================================
.de Sp \" Vertical space (when we can't use .PP)
.if t .sp .5v
.if n .sp
..
.de Vb \" Begin verbatim text
.ft CW
.nf
.ne \\$1
..
.de Ve \" End verbatim text
.ft R
.fi
..
.\" Set up some character translations and predefined strings.  \*(-- will
.\" give an unbreakable dash, \*(PI will give pi, \*(L" will give a left
.\" double quote, and \*(R" will give a right double quote.  \*(C+ will
.\" give a nicer C++.  Capital omega is used to do unbreakable dashes and
.\" therefore won't be available.  \*(C` and \*(C' expand to `' in nroff,
.\" nothing in troff, for use with C<>.
.tr \(*W-
.ds C+ C\v'-.1v'\h'-1p'\s-2+\h'-1p'+\s0\v'.1v'\h'-1p'
.ie n \{\
.    ds -- \(*W-
.    ds PI pi
.    if (\n(.H=4u)&(1m=24u) .ds -- \(*W\h'-12u'\(*W\h'-12u'-\" diablo 10 pitch
.    if (\n(.H=4u)&(1m=20u) .ds -- \(*W\h'-12u'\(*W\h'-8u'-\"  diablo 12 pitch
.    ds L" ""
.    ds R" ""
.    ds C` ""
.    ds C' ""
'br\}
.el\{\
.    ds -- \|\(em\|
.    ds PI \(*p
.    ds L" ``
.    ds R" ''
.    ds C`
.    ds C'
'br\}
.\"
.\" Escape single quotes in literal strings from groff's Unicode transform.
.ie \n(.g .ds Aq \(aq
.el       .ds Aq '
.\"
.\" If the F register is turned on, we'll generate index entries on stderr for
.\" titles (.TH), headers (.SH), subsections (.SS), items (.Ip), and index
.\" entries marked with X<> in POD.  Of course, you'll have to process the
.\" output yourself in some meaningful fashion.
.\"
.\" Avoid warning from groff about undefined register 'F'.
.de IX
..
.nr rF 0
.if \n(.g .if rF .nr rF 1
.if (\n(rF:(\n(.g==0)) \{
.    if \nF \{
.        de IX
.        tm Index:\\$1\t\\n%\t"\\$2"
..
.        if !\nF==2 \{
.            nr % 0
.            nr F 2
.        \}
.    \}
.\}
.rr rF
.\"
.\" Accent mark definitions (@(#)ms.acc 1.5 88/02/08 SMI; from UCB 4.2).
.\" Fear.  Run.  Save yourself.  No user-serviceable parts.
.    \" fudge factors for nroff and troff
.if n \{\
.    ds #H 0
.    ds #V .8m
.    ds #F .3m
.    ds #[ \f1
.    ds #] \fP
.\}
.if t \{\
.    ds #H ((1u-(\\\\n(.fu%2u))*.13m)
.    ds #V .6m
.    ds #F 0
.    ds #[ \&
.    ds #] \&
.\}
.    \" simple accents for nroff and troff
.if n \{\
.    ds ' \&
.    ds ` \&
.    ds ^ \&
.    ds , \&
.    ds ~ ~
.    ds /
.\}
.if t \{\
.    ds ' \\k:\h'-(\\n(.wu*8/10-\*(#H)'\'\h"|\\n:u"
.    ds ` \\k:\h'-(\\n(.wu*8/10-\*(#H)'\`\h'|\\n:u'
.    ds ^ \\k:\h'-(\\n(.wu*10/11-\*(#H)'^\h'|\\n:u'
.    ds , \\k:\h'-(\\n(.wu*8/10)',\h'|\\n:u'
.    ds ~ \\k:\h'-(\\n(.wu-\*(#H-.1m)'~\h'|\\n:u'
.    ds / \\k:\h'-(\\n(.wu*8/10-\*(#H)'\z\(sl\h'|\\n:u'
.\}
.    \" troff and (daisy-wheel) nroff accents
.ds : \\k:\h'-(\\n(.wu*8/10-\*(#H+.1m+\*(#F)'\v'-\*(#V'\z.\h'.2m+\*(#F'.\h'|\\n:u'\v'\*(#V'
.ds 8 \h'\*(#H'\(*b\h'-\*(#H'
.ds o \\k:\h'-(\\n(.wu+\w'\(de'u-\*(#H)/2u'\v'-.3n'\*(#[\z\(de\v'.3n'\h'|\\n:u'\*(#]
.ds d- \h'\*(#H'\(pd\h'-\w'~'u'\v'-.25m'\f2\(hy\fP\v'.25m'\h'-\*(#H'
.ds D- D\\k:\h'-\w'D'u'\v'-.11m'\z\(hy\v'.11m'\h'|\\n:u'
.ds th \*(#[\v'.3m'\s+1I\s-1\v'-.3m'\h'-(\w'I'u*2/3)'\s-1o\s+1\*(#]
.ds Th \*(#[\s+2I\s-2\h'-\w'I'u*3/5'\v'-.3m'o\v'.3m'\*(#]
.ds ae a\h'-(\w'a'u*4/10)'e
.ds Ae A\h'-(\w'A'u*4/10)'E
.    \" corrections for vroff
.if v .ds ~ \\k:\h'-(\\n(.wu*9/10-\*(#H)'\s-2\u~\d\s+2\h'|\\n:u'
.if v .ds ^ \\k:\h'-(\\n(.wu*10/11-\*(#H)'\v'-.4m'^\v'.4m'\h'|\\n:u'
.    \" for low resolution devices (crt and lpr)
.if \n(.H>23 .if \n(.V>19 \
\{\
.    ds : e
.    ds 8 ss
.    ds o a
.    ds d- d\h'-1'\(ga
.    ds D- D\h'-1'\(hy
.    ds th \o'bp'
.    ds Th \o'LP'
.    ds ae ae
.    ds Ae AE
.\}
.rm #[ #] #H #V #F C
.\" ========================================================================
.\"
.IX Title "SSL_READ 3"
.TH SSL_READ 3 "2017-05-25" "1.1.0f" "OpenSSL"
.\" For nroff, turn off justification.  Always turn off hyphenation; it makes
.\" way too many mistakes in technical documents.
.if n .ad l
.nh
.SH "NAME"
SSL_read \- read bytes from a TLS/SSL connection
.SH "SYNOPSIS"
.IX Header "SYNOPSIS"
.Vb 1
\& #include <openssl/ssl.h>
\&
\& int SSL_read(SSL *ssl, void *buf, int num);
.Ve
.SH "DESCRIPTION"
.IX Header "DESCRIPTION"
\&\fISSL_read()\fR tries to read \fBnum\fR bytes from the specified \fBssl\fR into the
buffer \fBbuf\fR.
.SH "NOTES"
.IX Header "NOTES"
If necessary, \fISSL_read()\fR will negotiate a \s-1TLS/SSL\s0 session, if
not already explicitly performed by \fISSL_connect\fR\|(3) or
\&\fISSL_accept\fR\|(3). If the
peer requests a re-negotiation, it will be performed transparently during
the \fISSL_read()\fR operation. The behaviour of \fISSL_read()\fR depends on the
underlying \s-1BIO.\s0
.PP
For the transparent negotiation to succeed, the \fBssl\fR must have been
initialized to client or server mode. This is being done by calling
\&\fISSL_set_connect_state\fR\|(3) or \fISSL_set_accept_state()\fR
before the first call to an \fISSL_read()\fR or \fISSL_write\fR\|(3)
function.
.PP
\&\fISSL_read()\fR works based on the \s-1SSL/TLS\s0 records. The data are received in
records (with a maximum record size of 16kB for SSLv3/TLSv1). Only when a
record has been completely received, it can be processed (decryption and
check of integrity). Therefore data that was not retrieved at the last
call of \fISSL_read()\fR can still be buffered inside the \s-1SSL\s0 layer and will be
retrieved on the next call to \fISSL_read()\fR. If \fBnum\fR is higher than the
number of bytes buffered, \fISSL_read()\fR will return with the bytes buffered.
If no more bytes are in the buffer, \fISSL_read()\fR will trigger the processing
of the next record. Only when the record has been received and processed
completely, \fISSL_read()\fR will return reporting success. At most the contents
of the record will be returned. As the size of an \s-1SSL/TLS\s0 record may exceed
the maximum packet size of the underlying transport (e.g. \s-1TCP\s0), it may
be necessary to read several packets from the transport layer before the
record is complete and \fISSL_read()\fR can succeed.
.PP
If the underlying \s-1BIO\s0 is \fBblocking\fR, \fISSL_read()\fR will only return, once the
read operation has been finished or an error occurred, except when a
renegotiation take place, in which case a \s-1SSL_ERROR_WANT_READ\s0 may occur.
This behaviour can be controlled with the \s-1SSL_MODE_AUTO_RETRY\s0 flag of the
\&\fISSL_CTX_set_mode\fR\|(3) call.
.PP
If the underlying \s-1BIO\s0 is \fBnon-blocking\fR, \fISSL_read()\fR will also return
when the underlying \s-1BIO\s0 could not satisfy the needs of \fISSL_read()\fR
to continue the operation. In this case a call to
\&\fISSL_get_error\fR\|(3) with the
return value of \fISSL_read()\fR will yield \fB\s-1SSL_ERROR_WANT_READ\s0\fR or
\&\fB\s-1SSL_ERROR_WANT_WRITE\s0\fR. As at any time a re-negotiation is possible, a
call to \fISSL_read()\fR can also cause write operations! The calling process
then must repeat the call after taking appropriate action to satisfy the
needs of \fISSL_read()\fR. The action depends on the underlying \s-1BIO.\s0 When using a
non-blocking socket, nothing is to be done, but \fIselect()\fR can be used to check
for the required condition. When using a buffering \s-1BIO,\s0 like a \s-1BIO\s0 pair, data
must be written into or retrieved out of the \s-1BIO\s0 before being able to continue.
.PP
\&\fISSL_pending\fR\|(3) can be used to find out whether there
are buffered bytes available for immediate retrieval. In this case
\&\fISSL_read()\fR can be called without blocking or actually receiving new
data from the underlying socket.
.SH "WARNING"
.IX Header "WARNING"
When an \fISSL_read()\fR operation has to be repeated because of
\&\fB\s-1SSL_ERROR_WANT_READ\s0\fR or \fB\s-1SSL_ERROR_WANT_WRITE\s0\fR, it must be repeated
with the same arguments.
.SH "RETURN VALUES"
.IX Header "RETURN VALUES"
The following return values can occur:
.IP "> 0" 4
.IX Item "> 0"
The read operation was successful.
The return value is the number of bytes actually read from the \s-1TLS/SSL\s0
connection.
.IP "<= 0" 4
.IX Item "<= 0"
The read operation was not successful, because either the connection was closed,
an error occurred or action must be taken by the calling process.
Call \fISSL_get_error\fR\|(3) with the return value \fBret\fR to find out the reason.
.Sp
Old documentation indicated a difference between 0 and \-1, and that \-1 was
retryable.
You should instead call \fISSL_get_error()\fR to find out if it's retryable.
.SH "SEE ALSO"
.IX Header "SEE ALSO"
\&\fISSL_get_error\fR\|(3), \fISSL_write\fR\|(3),
\&\fISSL_CTX_set_mode\fR\|(3), \fISSL_CTX_new\fR\|(3),
\&\fISSL_connect\fR\|(3), \fISSL_accept\fR\|(3)
\&\fISSL_set_connect_state\fR\|(3),
\&\fISSL_pending\fR\|(3),
\&\fISSL_shutdown\fR\|(3), \fISSL_set_shutdown\fR\|(3),
\&\fIssl\fR\|(3), \fIbio\fR\|(3)
.SH "COPYRIGHT"
.IX Header "COPYRIGHT"
Copyright 2000\-2016 The OpenSSL Project Authors. All Rights Reserved.
.PP
Licensed under the OpenSSL license (the \*(L"License\*(R").  You may not use
this file except in compliance with the License.  You can obtain a copy
in the file \s-1LICENSE\s0 in the source distribution or at
<https://www.openssl.org/source/license.html>.