• File: test_arrayfuncs.py
  • Full Path: /home/masbinta/public_html/admin/installer/css/sass/sym404/root/usr/local/lib64/python3.6/site-packages/sklearn/utils/tests/test_arrayfuncs.py
  • File size: 792 bytes
  • MIME-type: text/x-python
  • Charset: utf-8
import pytest
import numpy as np

from sklearn.utils._testing import assert_allclose
from sklearn.utils.arrayfuncs import min_pos


def test_min_pos():
    # Check that min_pos returns a positive value and that it's consistent
    # between float and double
    X = np.random.RandomState(0).randn(100)

    min_double = min_pos(X)
    min_float = min_pos(X.astype(np.float32))

    assert_allclose(min_double, min_float)
    assert min_double >= 0


@pytest.mark.parametrize("dtype", [np.float32, np.float64])
def test_min_pos_no_positive(dtype):
    # Check that the return value of min_pos is the maximum representable
    # value of the input dtype when all input elements are <= 0 (#19328)
    X = np.full(100, -1.).astype(dtype, copy=False)

    assert min_pos(X) == np.finfo(dtype).max