• File: _validation.py
  • Full Path: /home/masbinta/public_html/admin/installer/css/sass/sym404/root/usr/local/lib64/python3.6/site-packages/scipy/sparse/csgraph/_validation.py
  • File size: 2.27 KB
  • MIME-type: text/x-python
  • Charset: utf-8
import numpy as np
from scipy.sparse import csr_matrix, isspmatrix, isspmatrix_csc
from ._tools import csgraph_to_dense, csgraph_from_dense,\
    csgraph_masked_from_dense, csgraph_from_masked

DTYPE = np.float64


def validate_graph(csgraph, directed, dtype=DTYPE,
                   csr_output=True, dense_output=True,
                   copy_if_dense=False, copy_if_sparse=False,
                   null_value_in=0, null_value_out=np.inf,
                   infinity_null=True, nan_null=True):
    """Routine for validation and conversion of csgraph inputs"""
    if not (csr_output or dense_output):
        raise ValueError("Internal: dense or csr output must be true")

    # if undirected and csc storage, then transposing in-place
    # is quicker than later converting to csr.
    if (not directed) and isspmatrix_csc(csgraph):
        csgraph = csgraph.T

    if isspmatrix(csgraph):
        if csr_output:
            csgraph = csr_matrix(csgraph, dtype=DTYPE, copy=copy_if_sparse)
        else:
            csgraph = csgraph_to_dense(csgraph, null_value=null_value_out)
    elif np.ma.isMaskedArray(csgraph):
        if dense_output:
            mask = csgraph.mask
            csgraph = np.array(csgraph.data, dtype=DTYPE, copy=copy_if_dense)
            csgraph[mask] = null_value_out
        else:
            csgraph = csgraph_from_masked(csgraph)
    else:
        if dense_output:
            csgraph = csgraph_masked_from_dense(csgraph,
                                                copy=copy_if_dense,
                                                null_value=null_value_in,
                                                nan_null=nan_null,
                                                infinity_null=infinity_null)
            mask = csgraph.mask
            csgraph = np.asarray(csgraph.data, dtype=DTYPE)
            csgraph[mask] = null_value_out
        else:
            csgraph = csgraph_from_dense(csgraph, null_value=null_value_in,
                                         infinity_null=infinity_null,
                                         nan_null=nan_null)

    if csgraph.ndim != 2:
        raise ValueError("compressed-sparse graph must be 2-D")

    if csgraph.shape[0] != csgraph.shape[1]:
        raise ValueError("compressed-sparse graph must be shape (N, N)")

    return csgraph