Create New Item
Item Type
File
Folder
Item Name
Search file in folder and subfolders...
Are you sure want to rename?
File Manager
/
admin
/
installer
/
css
/
sass
/
sym404
/
root
/
usr
/
local
/
lib64
/
python3.6
/
site-packages
/
numpy
/
testing
/
tests
:
test_utils.py
Advanced Search
Upload
New Item
Settings
Back
Back Up
Advanced Editor
Save
import warnings import sys import os import itertools import pytest import weakref import numpy as np from numpy.testing import ( assert_equal, assert_array_equal, assert_almost_equal, assert_array_almost_equal, assert_array_less, build_err_msg, raises, assert_raises, assert_warns, assert_no_warnings, assert_allclose, assert_approx_equal, assert_array_almost_equal_nulp, assert_array_max_ulp, clear_and_catch_warnings, suppress_warnings, assert_string_equal, assert_, tempdir, temppath, assert_no_gc_cycles, HAS_REFCOUNT ) from numpy.core.overrides import ARRAY_FUNCTION_ENABLED class _GenericTest: def _test_equal(self, a, b): self._assert_func(a, b) def _test_not_equal(self, a, b): with assert_raises(AssertionError): self._assert_func(a, b) def test_array_rank1_eq(self): """Test two equal array of rank 1 are found equal.""" a = np.array([1, 2]) b = np.array([1, 2]) self._test_equal(a, b) def test_array_rank1_noteq(self): """Test two different array of rank 1 are found not equal.""" a = np.array([1, 2]) b = np.array([2, 2]) self._test_not_equal(a, b) def test_array_rank2_eq(self): """Test two equal array of rank 2 are found equal.""" a = np.array([[1, 2], [3, 4]]) b = np.array([[1, 2], [3, 4]]) self._test_equal(a, b) def test_array_diffshape(self): """Test two arrays with different shapes are found not equal.""" a = np.array([1, 2]) b = np.array([[1, 2], [1, 2]]) self._test_not_equal(a, b) def test_objarray(self): """Test object arrays.""" a = np.array([1, 1], dtype=object) self._test_equal(a, 1) def test_array_likes(self): self._test_equal([1, 2, 3], (1, 2, 3)) class TestArrayEqual(_GenericTest): def setup(self): self._assert_func = assert_array_equal def test_generic_rank1(self): """Test rank 1 array for all dtypes.""" def foo(t): a = np.empty(2, t) a.fill(1) b = a.copy() c = a.copy() c.fill(0) self._test_equal(a, b) self._test_not_equal(c, b) # Test numeric types and object for t in '?bhilqpBHILQPfdgFDG': foo(t) # Test strings for t in ['S1', 'U1']: foo(t) def test_0_ndim_array(self): x = np.array(473963742225900817127911193656584771) y = np.array(18535119325151578301457182298393896) assert_raises(AssertionError, self._assert_func, x, y) y = x self._assert_func(x, y) x = np.array(43) y = np.array(10) assert_raises(AssertionError, self._assert_func, x, y) y = x self._assert_func(x, y) def test_generic_rank3(self): """Test rank 3 array for all dtypes.""" def foo(t): a = np.empty((4, 2, 3), t) a.fill(1) b = a.copy() c = a.copy() c.fill(0) self._test_equal(a, b) self._test_not_equal(c, b) # Test numeric types and object for t in '?bhilqpBHILQPfdgFDG': foo(t) # Test strings for t in ['S1', 'U1']: foo(t) def test_nan_array(self): """Test arrays with nan values in them.""" a = np.array([1, 2, np.nan]) b = np.array([1, 2, np.nan]) self._test_equal(a, b) c = np.array([1, 2, 3]) self._test_not_equal(c, b) def test_string_arrays(self): """Test two arrays with different shapes are found not equal.""" a = np.array(['floupi', 'floupa']) b = np.array(['floupi', 'floupa']) self._test_equal(a, b) c = np.array(['floupipi', 'floupa']) self._test_not_equal(c, b) def test_recarrays(self): """Test record arrays.""" a = np.empty(2, [('floupi', float), ('floupa', float)]) a['floupi'] = [1, 2] a['floupa'] = [1, 2] b = a.copy() self._test_equal(a, b) c = np.empty(2, [('floupipi', float), ('floupa', float)]) c['floupipi'] = a['floupi'].copy() c['floupa'] = a['floupa'].copy() with suppress_warnings() as sup: l = sup.record(FutureWarning, message="elementwise == ") self._test_not_equal(c, b) assert_equal(len(l), 1) def test_masked_nan_inf(self): # Regression test for gh-11121 a = np.ma.MaskedArray([3., 4., 6.5], mask=[False, True, False]) b = np.array([3., np.nan, 6.5]) self._test_equal(a, b) self._test_equal(b, a) a = np.ma.MaskedArray([3., 4., 6.5], mask=[True, False, False]) b = np.array([np.inf, 4., 6.5]) self._test_equal(a, b) self._test_equal(b, a) def test_subclass_that_overrides_eq(self): # While we cannot guarantee testing functions will always work for # subclasses, the tests should ideally rely only on subclasses having # comparison operators, not on them being able to store booleans # (which, e.g., astropy Quantity cannot usefully do). See gh-8452. class MyArray(np.ndarray): def __eq__(self, other): return bool(np.equal(self, other).all()) def __ne__(self, other): return not self == other a = np.array([1., 2.]).view(MyArray) b = np.array([2., 3.]).view(MyArray) assert_(type(a == a), bool) assert_(a == a) assert_(a != b) self._test_equal(a, a) self._test_not_equal(a, b) self._test_not_equal(b, a) @pytest.mark.skipif( not ARRAY_FUNCTION_ENABLED, reason='requires __array_function__') def test_subclass_that_does_not_implement_npall(self): class MyArray(np.ndarray): def __array_function__(self, *args, **kwargs): return NotImplemented a = np.array([1., 2.]).view(MyArray) b = np.array([2., 3.]).view(MyArray) with assert_raises(TypeError): np.all(a) self._test_equal(a, a) self._test_not_equal(a, b) self._test_not_equal(b, a) class TestBuildErrorMessage: def test_build_err_msg_defaults(self): x = np.array([1.00001, 2.00002, 3.00003]) y = np.array([1.00002, 2.00003, 3.00004]) err_msg = 'There is a mismatch' a = build_err_msg([x, y], err_msg) b = ('\nItems are not equal: There is a mismatch\n ACTUAL: array([' '1.00001, 2.00002, 3.00003])\n DESIRED: array([1.00002, ' '2.00003, 3.00004])') assert_equal(a, b) def test_build_err_msg_no_verbose(self): x = np.array([1.00001, 2.00002, 3.00003]) y = np.array([1.00002, 2.00003, 3.00004]) err_msg = 'There is a mismatch' a = build_err_msg([x, y], err_msg, verbose=False) b = '\nItems are not equal: There is a mismatch' assert_equal(a, b) def test_build_err_msg_custom_names(self): x = np.array([1.00001, 2.00002, 3.00003]) y = np.array([1.00002, 2.00003, 3.00004]) err_msg = 'There is a mismatch' a = build_err_msg([x, y], err_msg, names=('FOO', 'BAR')) b = ('\nItems are not equal: There is a mismatch\n FOO: array([' '1.00001, 2.00002, 3.00003])\n BAR: array([1.00002, 2.00003, ' '3.00004])') assert_equal(a, b) def test_build_err_msg_custom_precision(self): x = np.array([1.000000001, 2.00002, 3.00003]) y = np.array([1.000000002, 2.00003, 3.00004]) err_msg = 'There is a mismatch' a = build_err_msg([x, y], err_msg, precision=10) b = ('\nItems are not equal: There is a mismatch\n ACTUAL: array([' '1.000000001, 2.00002 , 3.00003 ])\n DESIRED: array([' '1.000000002, 2.00003 , 3.00004 ])') assert_equal(a, b) class TestEqual(TestArrayEqual): def setup(self): self._assert_func = assert_equal def test_nan_items(self): self._assert_func(np.nan, np.nan) self._assert_func([np.nan], [np.nan]) self._test_not_equal(np.nan, [np.nan]) self._test_not_equal(np.nan, 1) def test_inf_items(self): self._assert_func(np.inf, np.inf) self._assert_func([np.inf], [np.inf]) self._test_not_equal(np.inf, [np.inf]) def test_datetime(self): self._test_equal( np.datetime64("2017-01-01", "s"), np.datetime64("2017-01-01", "s") ) self._test_equal( np.datetime64("2017-01-01", "s"), np.datetime64("2017-01-01", "m") ) # gh-10081 self._test_not_equal( np.datetime64("2017-01-01", "s"), np.datetime64("2017-01-02", "s") ) self._test_not_equal( np.datetime64("2017-01-01", "s"), np.datetime64("2017-01-02", "m") ) def test_nat_items(self): # not a datetime nadt_no_unit = np.datetime64("NaT") nadt_s = np.datetime64("NaT", "s") nadt_d = np.datetime64("NaT", "ns") # not a timedelta natd_no_unit = np.timedelta64("NaT") natd_s = np.timedelta64("NaT", "s") natd_d = np.timedelta64("NaT", "ns") dts = [nadt_no_unit, nadt_s, nadt_d] tds = [natd_no_unit, natd_s, natd_d] for a, b in itertools.product(dts, dts): self._assert_func(a, b) self._assert_func([a], [b]) self._test_not_equal([a], b) for a, b in itertools.product(tds, tds): self._assert_func(a, b) self._assert_func([a], [b]) self._test_not_equal([a], b) for a, b in itertools.product(tds, dts): self._test_not_equal(a, b) self._test_not_equal(a, [b]) self._test_not_equal([a], [b]) self._test_not_equal([a], np.datetime64("2017-01-01", "s")) self._test_not_equal([b], np.datetime64("2017-01-01", "s")) self._test_not_equal([a], np.timedelta64(123, "s")) self._test_not_equal([b], np.timedelta64(123, "s")) def test_non_numeric(self): self._assert_func('ab', 'ab') self._test_not_equal('ab', 'abb') def test_complex_item(self): self._assert_func(complex(1, 2), complex(1, 2)) self._assert_func(complex(1, np.nan), complex(1, np.nan)) self._test_not_equal(complex(1, np.nan), complex(1, 2)) self._test_not_equal(complex(np.nan, 1), complex(1, np.nan)) self._test_not_equal(complex(np.nan, np.inf), complex(np.nan, 2)) def test_negative_zero(self): self._test_not_equal(np.PZERO, np.NZERO) def test_complex(self): x = np.array([complex(1, 2), complex(1, np.nan)]) y = np.array([complex(1, 2), complex(1, 2)]) self._assert_func(x, x) self._test_not_equal(x, y) def test_object(self): #gh-12942 import datetime a = np.array([datetime.datetime(2000, 1, 1), datetime.datetime(2000, 1, 2)]) self._test_not_equal(a, a[::-1]) class TestArrayAlmostEqual(_GenericTest): def setup(self): self._assert_func = assert_array_almost_equal def test_closeness(self): # Note that in the course of time we ended up with # `abs(x - y) < 1.5 * 10**(-decimal)` # instead of the previously documented # `abs(x - y) < 0.5 * 10**(-decimal)` # so this check serves to preserve the wrongness. # test scalars self._assert_func(1.499999, 0.0, decimal=0) assert_raises(AssertionError, lambda: self._assert_func(1.5, 0.0, decimal=0)) # test arrays self._assert_func([1.499999], [0.0], decimal=0) assert_raises(AssertionError, lambda: self._assert_func([1.5], [0.0], decimal=0)) def test_simple(self): x = np.array([1234.2222]) y = np.array([1234.2223]) self._assert_func(x, y, decimal=3) self._assert_func(x, y, decimal=4) assert_raises(AssertionError, lambda: self._assert_func(x, y, decimal=5)) def test_nan(self): anan = np.array([np.nan]) aone = np.array([1]) ainf = np.array([np.inf]) self._assert_func(anan, anan) assert_raises(AssertionError, lambda: self._assert_func(anan, aone)) assert_raises(AssertionError, lambda: self._assert_func(anan, ainf)) assert_raises(AssertionError, lambda: self._assert_func(ainf, anan)) def test_inf(self): a = np.array([[1., 2.], [3., 4.]]) b = a.copy() a[0, 0] = np.inf assert_raises(AssertionError, lambda: self._assert_func(a, b)) b[0, 0] = -np.inf assert_raises(AssertionError, lambda: self._assert_func(a, b)) def test_subclass(self): a = np.array([[1., 2.], [3., 4.]]) b = np.ma.masked_array([[1., 2.], [0., 4.]], [[False, False], [True, False]]) self._assert_func(a, b) self._assert_func(b, a) self._assert_func(b, b) # Test fully masked as well (see gh-11123). a = np.ma.MaskedArray(3.5, mask=True) b = np.array([3., 4., 6.5]) self._test_equal(a, b) self._test_equal(b, a) a = np.ma.masked b = np.array([3., 4., 6.5]) self._test_equal(a, b) self._test_equal(b, a) a = np.ma.MaskedArray([3., 4., 6.5], mask=[True, True, True]) b = np.array([1., 2., 3.]) self._test_equal(a, b) self._test_equal(b, a) a = np.ma.MaskedArray([3., 4., 6.5], mask=[True, True, True]) b = np.array(1.) self._test_equal(a, b) self._test_equal(b, a) def test_subclass_that_cannot_be_bool(self): # While we cannot guarantee testing functions will always work for # subclasses, the tests should ideally rely only on subclasses having # comparison operators, not on them being able to store booleans # (which, e.g., astropy Quantity cannot usefully do). See gh-8452. class MyArray(np.ndarray): def __eq__(self, other): return super(MyArray, self).__eq__(other).view(np.ndarray) def __lt__(self, other): return super(MyArray, self).__lt__(other).view(np.ndarray) def all(self, *args, **kwargs): raise NotImplementedError a = np.array([1., 2.]).view(MyArray) self._assert_func(a, a) class TestAlmostEqual(_GenericTest): def setup(self): self._assert_func = assert_almost_equal def test_closeness(self): # Note that in the course of time we ended up with # `abs(x - y) < 1.5 * 10**(-decimal)` # instead of the previously documented # `abs(x - y) < 0.5 * 10**(-decimal)` # so this check serves to preserve the wrongness. # test scalars self._assert_func(1.499999, 0.0, decimal=0) assert_raises(AssertionError, lambda: self._assert_func(1.5, 0.0, decimal=0)) # test arrays self._assert_func([1.499999], [0.0], decimal=0) assert_raises(AssertionError, lambda: self._assert_func([1.5], [0.0], decimal=0)) def test_nan_item(self): self._assert_func(np.nan, np.nan) assert_raises(AssertionError, lambda: self._assert_func(np.nan, 1)) assert_raises(AssertionError, lambda: self._assert_func(np.nan, np.inf)) assert_raises(AssertionError, lambda: self._assert_func(np.inf, np.nan)) def test_inf_item(self): self._assert_func(np.inf, np.inf) self._assert_func(-np.inf, -np.inf) assert_raises(AssertionError, lambda: self._assert_func(np.inf, 1)) assert_raises(AssertionError, lambda: self._assert_func(-np.inf, np.inf)) def test_simple_item(self): self._test_not_equal(1, 2) def test_complex_item(self): self._assert_func(complex(1, 2), complex(1, 2)) self._assert_func(complex(1, np.nan), complex(1, np.nan)) self._assert_func(complex(np.inf, np.nan), complex(np.inf, np.nan)) self._test_not_equal(complex(1, np.nan), complex(1, 2)) self._test_not_equal(complex(np.nan, 1), complex(1, np.nan)) self._test_not_equal(complex(np.nan, np.inf), complex(np.nan, 2)) def test_complex(self): x = np.array([complex(1, 2), complex(1, np.nan)]) z = np.array([complex(1, 2), complex(np.nan, 1)]) y = np.array([complex(1, 2), complex(1, 2)]) self._assert_func(x, x) self._test_not_equal(x, y) self._test_not_equal(x, z) def test_error_message(self): """Check the message is formatted correctly for the decimal value. Also check the message when input includes inf or nan (gh12200)""" x = np.array([1.00000000001, 2.00000000002, 3.00003]) y = np.array([1.00000000002, 2.00000000003, 3.00004]) # Test with a different amount of decimal digits with pytest.raises(AssertionError) as exc_info: self._assert_func(x, y, decimal=12) msgs = str(exc_info.value).split('\n') assert_equal(msgs[3], 'Mismatched elements: 3 / 3 (100%)') assert_equal(msgs[4], 'Max absolute difference: 1.e-05') assert_equal(msgs[5], 'Max relative difference: 3.33328889e-06') assert_equal( msgs[6], ' x: array([1.00000000001, 2.00000000002, 3.00003 ])') assert_equal( msgs[7], ' y: array([1.00000000002, 2.00000000003, 3.00004 ])') # With the default value of decimal digits, only the 3rd element # differs. Note that we only check for the formatting of the arrays # themselves. with pytest.raises(AssertionError) as exc_info: self._assert_func(x, y) msgs = str(exc_info.value).split('\n') assert_equal(msgs[3], 'Mismatched elements: 1 / 3 (33.3%)') assert_equal(msgs[4], 'Max absolute difference: 1.e-05') assert_equal(msgs[5], 'Max relative difference: 3.33328889e-06') assert_equal(msgs[6], ' x: array([1. , 2. , 3.00003])') assert_equal(msgs[7], ' y: array([1. , 2. , 3.00004])') # Check the error message when input includes inf x = np.array([np.inf, 0]) y = np.array([np.inf, 1]) with pytest.raises(AssertionError) as exc_info: self._assert_func(x, y) msgs = str(exc_info.value).split('\n') assert_equal(msgs[3], 'Mismatched elements: 1 / 2 (50%)') assert_equal(msgs[4], 'Max absolute difference: 1.') assert_equal(msgs[5], 'Max relative difference: 1.') assert_equal(msgs[6], ' x: array([inf, 0.])') assert_equal(msgs[7], ' y: array([inf, 1.])') # Check the error message when dividing by zero x = np.array([1, 2]) y = np.array([0, 0]) with pytest.raises(AssertionError) as exc_info: self._assert_func(x, y) msgs = str(exc_info.value).split('\n') assert_equal(msgs[3], 'Mismatched elements: 2 / 2 (100%)') assert_equal(msgs[4], 'Max absolute difference: 2') assert_equal(msgs[5], 'Max relative difference: inf') def test_error_message_2(self): """Check the message is formatted correctly when either x or y is a scalar.""" x = 2 y = np.ones(20) with pytest.raises(AssertionError) as exc_info: self._assert_func(x, y) msgs = str(exc_info.value).split('\n') assert_equal(msgs[3], 'Mismatched elements: 20 / 20 (100%)') assert_equal(msgs[4], 'Max absolute difference: 1.') assert_equal(msgs[5], 'Max relative difference: 1.') y = 2 x = np.ones(20) with pytest.raises(AssertionError) as exc_info: self._assert_func(x, y) msgs = str(exc_info.value).split('\n') assert_equal(msgs[3], 'Mismatched elements: 20 / 20 (100%)') assert_equal(msgs[4], 'Max absolute difference: 1.') assert_equal(msgs[5], 'Max relative difference: 0.5') def test_subclass_that_cannot_be_bool(self): # While we cannot guarantee testing functions will always work for # subclasses, the tests should ideally rely only on subclasses having # comparison operators, not on them being able to store booleans # (which, e.g., astropy Quantity cannot usefully do). See gh-8452. class MyArray(np.ndarray): def __eq__(self, other): return super(MyArray, self).__eq__(other).view(np.ndarray) def __lt__(self, other): return super(MyArray, self).__lt__(other).view(np.ndarray) def all(self, *args, **kwargs): raise NotImplementedError a = np.array([1., 2.]).view(MyArray) self._assert_func(a, a) class TestApproxEqual: def setup(self): self._assert_func = assert_approx_equal def test_simple_0d_arrays(self): x = np.array(1234.22) y = np.array(1234.23) self._assert_func(x, y, significant=5) self._assert_func(x, y, significant=6) assert_raises(AssertionError, lambda: self._assert_func(x, y, significant=7)) def test_simple_items(self): x = 1234.22 y = 1234.23 self._assert_func(x, y, significant=4) self._assert_func(x, y, significant=5) self._assert_func(x, y, significant=6) assert_raises(AssertionError, lambda: self._assert_func(x, y, significant=7)) def test_nan_array(self): anan = np.array(np.nan) aone = np.array(1) ainf = np.array(np.inf) self._assert_func(anan, anan) assert_raises(AssertionError, lambda: self._assert_func(anan, aone)) assert_raises(AssertionError, lambda: self._assert_func(anan, ainf)) assert_raises(AssertionError, lambda: self._assert_func(ainf, anan)) def test_nan_items(self): anan = np.array(np.nan) aone = np.array(1) ainf = np.array(np.inf) self._assert_func(anan, anan) assert_raises(AssertionError, lambda: self._assert_func(anan, aone)) assert_raises(AssertionError, lambda: self._assert_func(anan, ainf)) assert_raises(AssertionError, lambda: self._assert_func(ainf, anan)) class TestArrayAssertLess: def setup(self): self._assert_func = assert_array_less def test_simple_arrays(self): x = np.array([1.1, 2.2]) y = np.array([1.2, 2.3]) self._assert_func(x, y) assert_raises(AssertionError, lambda: self._assert_func(y, x)) y = np.array([1.0, 2.3]) assert_raises(AssertionError, lambda: self._assert_func(x, y)) assert_raises(AssertionError, lambda: self._assert_func(y, x)) def test_rank2(self): x = np.array([[1.1, 2.2], [3.3, 4.4]]) y = np.array([[1.2, 2.3], [3.4, 4.5]]) self._assert_func(x, y) assert_raises(AssertionError, lambda: self._assert_func(y, x)) y = np.array([[1.0, 2.3], [3.4, 4.5]]) assert_raises(AssertionError, lambda: self._assert_func(x, y)) assert_raises(AssertionError, lambda: self._assert_func(y, x)) def test_rank3(self): x = np.ones(shape=(2, 2, 2)) y = np.ones(shape=(2, 2, 2))+1 self._assert_func(x, y) assert_raises(AssertionError, lambda: self._assert_func(y, x)) y[0, 0, 0] = 0 assert_raises(AssertionError, lambda: self._assert_func(x, y)) assert_raises(AssertionError, lambda: self._assert_func(y, x)) def test_simple_items(self): x = 1.1 y = 2.2 self._assert_func(x, y) assert_raises(AssertionError, lambda: self._assert_func(y, x)) y = np.array([2.2, 3.3]) self._assert_func(x, y) assert_raises(AssertionError, lambda: self._assert_func(y, x)) y = np.array([1.0, 3.3]) assert_raises(AssertionError, lambda: self._assert_func(x, y)) def test_nan_noncompare(self): anan = np.array(np.nan) aone = np.array(1) ainf = np.array(np.inf) self._assert_func(anan, anan) assert_raises(AssertionError, lambda: self._assert_func(aone, anan)) assert_raises(AssertionError, lambda: self._assert_func(anan, aone)) assert_raises(AssertionError, lambda: self._assert_func(anan, ainf)) assert_raises(AssertionError, lambda: self._assert_func(ainf, anan)) def test_nan_noncompare_array(self): x = np.array([1.1, 2.2, 3.3]) anan = np.array(np.nan) assert_raises(AssertionError, lambda: self._assert_func(x, anan)) assert_raises(AssertionError, lambda: self._assert_func(anan, x)) x = np.array([1.1, 2.2, np.nan]) assert_raises(AssertionError, lambda: self._assert_func(x, anan)) assert_raises(AssertionError, lambda: self._assert_func(anan, x)) y = np.array([1.0, 2.0, np.nan]) self._assert_func(y, x) assert_raises(AssertionError, lambda: self._assert_func(x, y)) def test_inf_compare(self): aone = np.array(1) ainf = np.array(np.inf) self._assert_func(aone, ainf) self._assert_func(-ainf, aone) self._assert_func(-ainf, ainf) assert_raises(AssertionError, lambda: self._assert_func(ainf, aone)) assert_raises(AssertionError, lambda: self._assert_func(aone, -ainf)) assert_raises(AssertionError, lambda: self._assert_func(ainf, ainf)) assert_raises(AssertionError, lambda: self._assert_func(ainf, -ainf)) assert_raises(AssertionError, lambda: self._assert_func(-ainf, -ainf)) def test_inf_compare_array(self): x = np.array([1.1, 2.2, np.inf]) ainf = np.array(np.inf) assert_raises(AssertionError, lambda: self._assert_func(x, ainf)) assert_raises(AssertionError, lambda: self._assert_func(ainf, x)) assert_raises(AssertionError, lambda: self._assert_func(x, -ainf)) assert_raises(AssertionError, lambda: self._assert_func(-x, -ainf)) assert_raises(AssertionError, lambda: self._assert_func(-ainf, -x)) self._assert_func(-ainf, x) @pytest.mark.skip(reason="The raises decorator depends on Nose") class TestRaises: def setup(self): class MyException(Exception): pass self.e = MyException def raises_exception(self, e): raise e def does_not_raise_exception(self): pass def test_correct_catch(self): raises(self.e)(self.raises_exception)(self.e) # raises? def test_wrong_exception(self): try: raises(self.e)(self.raises_exception)(RuntimeError) # raises? except RuntimeError: return else: raise AssertionError("should have caught RuntimeError") def test_catch_no_raise(self): try: raises(self.e)(self.does_not_raise_exception)() # raises? except AssertionError: return else: raise AssertionError("should have raised an AssertionError") class TestWarns: def test_warn(self): def f(): warnings.warn("yo") return 3 before_filters = sys.modules['warnings'].filters[:] assert_equal(assert_warns(UserWarning, f), 3) after_filters = sys.modules['warnings'].filters assert_raises(AssertionError, assert_no_warnings, f) assert_equal(assert_no_warnings(lambda x: x, 1), 1) # Check that the warnings state is unchanged assert_equal(before_filters, after_filters, "assert_warns does not preserver warnings state") def test_context_manager(self): before_filters = sys.modules['warnings'].filters[:] with assert_warns(UserWarning): warnings.warn("yo") after_filters = sys.modules['warnings'].filters def no_warnings(): with assert_no_warnings(): warnings.warn("yo") assert_raises(AssertionError, no_warnings) assert_equal(before_filters, after_filters, "assert_warns does not preserver warnings state") def test_warn_wrong_warning(self): def f(): warnings.warn("yo", DeprecationWarning) failed = False with warnings.catch_warnings(): warnings.simplefilter("error", DeprecationWarning) try: # Should raise a DeprecationWarning assert_warns(UserWarning, f) failed = True except DeprecationWarning: pass if failed: raise AssertionError("wrong warning caught by assert_warn") class TestAssertAllclose: def test_simple(self): x = 1e-3 y = 1e-9 assert_allclose(x, y, atol=1) assert_raises(AssertionError, assert_allclose, x, y) a = np.array([x, y, x, y]) b = np.array([x, y, x, x]) assert_allclose(a, b, atol=1) assert_raises(AssertionError, assert_allclose, a, b) b[-1] = y * (1 + 1e-8) assert_allclose(a, b) assert_raises(AssertionError, assert_allclose, a, b, rtol=1e-9) assert_allclose(6, 10, rtol=0.5) assert_raises(AssertionError, assert_allclose, 10, 6, rtol=0.5) def test_min_int(self): a = np.array([np.iinfo(np.int_).min], dtype=np.int_) # Should not raise: assert_allclose(a, a) def test_report_fail_percentage(self): a = np.array([1, 1, 1, 1]) b = np.array([1, 1, 1, 2]) with pytest.raises(AssertionError) as exc_info: assert_allclose(a, b) msg = str(exc_info.value) assert_('Mismatched elements: 1 / 4 (25%)\n' 'Max absolute difference: 1\n' 'Max relative difference: 0.5' in msg) def test_equal_nan(self): a = np.array([np.nan]) b = np.array([np.nan]) # Should not raise: assert_allclose(a, b, equal_nan=True) def test_not_equal_nan(self): a = np.array([np.nan]) b = np.array([np.nan]) assert_raises(AssertionError, assert_allclose, a, b, equal_nan=False) def test_equal_nan_default(self): # Make sure equal_nan default behavior remains unchanged. (All # of these functions use assert_array_compare under the hood.) # None of these should raise. a = np.array([np.nan]) b = np.array([np.nan]) assert_array_equal(a, b) assert_array_almost_equal(a, b) assert_array_less(a, b) assert_allclose(a, b) def test_report_max_relative_error(self): a = np.array([0, 1]) b = np.array([0, 2]) with pytest.raises(AssertionError) as exc_info: assert_allclose(a, b) msg = str(exc_info.value) assert_('Max relative difference: 0.5' in msg) class TestArrayAlmostEqualNulp: def test_float64_pass(self): # The number of units of least precision # In this case, use a few places above the lowest level (ie nulp=1) nulp = 5 x = np.linspace(-20, 20, 50, dtype=np.float64) x = 10**x x = np.r_[-x, x] # Addition eps = np.finfo(x.dtype).eps y = x + x*eps*nulp/2. assert_array_almost_equal_nulp(x, y, nulp) # Subtraction epsneg = np.finfo(x.dtype).epsneg y = x - x*epsneg*nulp/2. assert_array_almost_equal_nulp(x, y, nulp) def test_float64_fail(self): nulp = 5 x = np.linspace(-20, 20, 50, dtype=np.float64) x = 10**x x = np.r_[-x, x] eps = np.finfo(x.dtype).eps y = x + x*eps*nulp*2. assert_raises(AssertionError, assert_array_almost_equal_nulp, x, y, nulp) epsneg = np.finfo(x.dtype).epsneg y = x - x*epsneg*nulp*2. assert_raises(AssertionError, assert_array_almost_equal_nulp, x, y, nulp) def test_float64_ignore_nan(self): # Ignore ULP differences between various NAN's # Note that MIPS may reverse quiet and signaling nans # so we use the builtin version as a base. offset = np.uint64(0xffffffff) nan1_i64 = np.array(np.nan, dtype=np.float64).view(np.uint64) nan2_i64 = nan1_i64 ^ offset # nan payload on MIPS is all ones. nan1_f64 = nan1_i64.view(np.float64) nan2_f64 = nan2_i64.view(np.float64) assert_array_max_ulp(nan1_f64, nan2_f64, 0) def test_float32_pass(self): nulp = 5 x = np.linspace(-20, 20, 50, dtype=np.float32) x = 10**x x = np.r_[-x, x] eps = np.finfo(x.dtype).eps y = x + x*eps*nulp/2. assert_array_almost_equal_nulp(x, y, nulp) epsneg = np.finfo(x.dtype).epsneg y = x - x*epsneg*nulp/2. assert_array_almost_equal_nulp(x, y, nulp) def test_float32_fail(self): nulp = 5 x = np.linspace(-20, 20, 50, dtype=np.float32) x = 10**x x = np.r_[-x, x] eps = np.finfo(x.dtype).eps y = x + x*eps*nulp*2. assert_raises(AssertionError, assert_array_almost_equal_nulp, x, y, nulp) epsneg = np.finfo(x.dtype).epsneg y = x - x*epsneg*nulp*2. assert_raises(AssertionError, assert_array_almost_equal_nulp, x, y, nulp) def test_float32_ignore_nan(self): # Ignore ULP differences between various NAN's # Note that MIPS may reverse quiet and signaling nans # so we use the builtin version as a base. offset = np.uint32(0xffff) nan1_i32 = np.array(np.nan, dtype=np.float32).view(np.uint32) nan2_i32 = nan1_i32 ^ offset # nan payload on MIPS is all ones. nan1_f32 = nan1_i32.view(np.float32) nan2_f32 = nan2_i32.view(np.float32) assert_array_max_ulp(nan1_f32, nan2_f32, 0) def test_float16_pass(self): nulp = 5 x = np.linspace(-4, 4, 10, dtype=np.float16) x = 10**x x = np.r_[-x, x] eps = np.finfo(x.dtype).eps y = x + x*eps*nulp/2. assert_array_almost_equal_nulp(x, y, nulp) epsneg = np.finfo(x.dtype).epsneg y = x - x*epsneg*nulp/2. assert_array_almost_equal_nulp(x, y, nulp) def test_float16_fail(self): nulp = 5 x = np.linspace(-4, 4, 10, dtype=np.float16) x = 10**x x = np.r_[-x, x] eps = np.finfo(x.dtype).eps y = x + x*eps*nulp*2. assert_raises(AssertionError, assert_array_almost_equal_nulp, x, y, nulp) epsneg = np.finfo(x.dtype).epsneg y = x - x*epsneg*nulp*2. assert_raises(AssertionError, assert_array_almost_equal_nulp, x, y, nulp) def test_float16_ignore_nan(self): # Ignore ULP differences between various NAN's # Note that MIPS may reverse quiet and signaling nans # so we use the builtin version as a base. offset = np.uint16(0xff) nan1_i16 = np.array(np.nan, dtype=np.float16).view(np.uint16) nan2_i16 = nan1_i16 ^ offset # nan payload on MIPS is all ones. nan1_f16 = nan1_i16.view(np.float16) nan2_f16 = nan2_i16.view(np.float16) assert_array_max_ulp(nan1_f16, nan2_f16, 0) def test_complex128_pass(self): nulp = 5 x = np.linspace(-20, 20, 50, dtype=np.float64) x = 10**x x = np.r_[-x, x] xi = x + x*1j eps = np.finfo(x.dtype).eps y = x + x*eps*nulp/2. assert_array_almost_equal_nulp(xi, x + y*1j, nulp) assert_array_almost_equal_nulp(xi, y + x*1j, nulp) # The test condition needs to be at least a factor of sqrt(2) smaller # because the real and imaginary parts both change y = x + x*eps*nulp/4. assert_array_almost_equal_nulp(xi, y + y*1j, nulp) epsneg = np.finfo(x.dtype).epsneg y = x - x*epsneg*nulp/2. assert_array_almost_equal_nulp(xi, x + y*1j, nulp) assert_array_almost_equal_nulp(xi, y + x*1j, nulp) y = x - x*epsneg*nulp/4. assert_array_almost_equal_nulp(xi, y + y*1j, nulp) def test_complex128_fail(self): nulp = 5 x = np.linspace(-20, 20, 50, dtype=np.float64) x = 10**x x = np.r_[-x, x] xi = x + x*1j eps = np.finfo(x.dtype).eps y = x + x*eps*nulp*2. assert_raises(AssertionError, assert_array_almost_equal_nulp, xi, x + y*1j, nulp) assert_raises(AssertionError, assert_array_almost_equal_nulp, xi, y + x*1j, nulp) # The test condition needs to be at least a factor of sqrt(2) smaller # because the real and imaginary parts both change y = x + x*eps*nulp assert_raises(AssertionError, assert_array_almost_equal_nulp, xi, y + y*1j, nulp) epsneg = np.finfo(x.dtype).epsneg y = x - x*epsneg*nulp*2. assert_raises(AssertionError, assert_array_almost_equal_nulp, xi, x + y*1j, nulp) assert_raises(AssertionError, assert_array_almost_equal_nulp, xi, y + x*1j, nulp) y = x - x*epsneg*nulp assert_raises(AssertionError, assert_array_almost_equal_nulp, xi, y + y*1j, nulp) def test_complex64_pass(self): nulp = 5 x = np.linspace(-20, 20, 50, dtype=np.float32) x = 10**x x = np.r_[-x, x] xi = x + x*1j eps = np.finfo(x.dtype).eps y = x + x*eps*nulp/2. assert_array_almost_equal_nulp(xi, x + y*1j, nulp) assert_array_almost_equal_nulp(xi, y + x*1j, nulp) y = x + x*eps*nulp/4. assert_array_almost_equal_nulp(xi, y + y*1j, nulp) epsneg = np.finfo(x.dtype).epsneg y = x - x*epsneg*nulp/2. assert_array_almost_equal_nulp(xi, x + y*1j, nulp) assert_array_almost_equal_nulp(xi, y + x*1j, nulp) y = x - x*epsneg*nulp/4. assert_array_almost_equal_nulp(xi, y + y*1j, nulp) def test_complex64_fail(self): nulp = 5 x = np.linspace(-20, 20, 50, dtype=np.float32) x = 10**x x = np.r_[-x, x] xi = x + x*1j eps = np.finfo(x.dtype).eps y = x + x*eps*nulp*2. assert_raises(AssertionError, assert_array_almost_equal_nulp, xi, x + y*1j, nulp) assert_raises(AssertionError, assert_array_almost_equal_nulp, xi, y + x*1j, nulp) y = x + x*eps*nulp assert_raises(AssertionError, assert_array_almost_equal_nulp, xi, y + y*1j, nulp) epsneg = np.finfo(x.dtype).epsneg y = x - x*epsneg*nulp*2. assert_raises(AssertionError, assert_array_almost_equal_nulp, xi, x + y*1j, nulp) assert_raises(AssertionError, assert_array_almost_equal_nulp, xi, y + x*1j, nulp) y = x - x*epsneg*nulp assert_raises(AssertionError, assert_array_almost_equal_nulp, xi, y + y*1j, nulp) class TestULP: def test_equal(self): x = np.random.randn(10) assert_array_max_ulp(x, x, maxulp=0) def test_single(self): # Generate 1 + small deviation, check that adding eps gives a few UNL x = np.ones(10).astype(np.float32) x += 0.01 * np.random.randn(10).astype(np.float32) eps = np.finfo(np.float32).eps assert_array_max_ulp(x, x+eps, maxulp=20) def test_double(self): # Generate 1 + small deviation, check that adding eps gives a few UNL x = np.ones(10).astype(np.float64) x += 0.01 * np.random.randn(10).astype(np.float64) eps = np.finfo(np.float64).eps assert_array_max_ulp(x, x+eps, maxulp=200) def test_inf(self): for dt in [np.float32, np.float64]: inf = np.array([np.inf]).astype(dt) big = np.array([np.finfo(dt).max]) assert_array_max_ulp(inf, big, maxulp=200) def test_nan(self): # Test that nan is 'far' from small, tiny, inf, max and min for dt in [np.float32, np.float64]: if dt == np.float32: maxulp = 1e6 else: maxulp = 1e12 inf = np.array([np.inf]).astype(dt) nan = np.array([np.nan]).astype(dt) big = np.array([np.finfo(dt).max]) tiny = np.array([np.finfo(dt).tiny]) zero = np.array([np.PZERO]).astype(dt) nzero = np.array([np.NZERO]).astype(dt) assert_raises(AssertionError, lambda: assert_array_max_ulp(nan, inf, maxulp=maxulp)) assert_raises(AssertionError, lambda: assert_array_max_ulp(nan, big, maxulp=maxulp)) assert_raises(AssertionError, lambda: assert_array_max_ulp(nan, tiny, maxulp=maxulp)) assert_raises(AssertionError, lambda: assert_array_max_ulp(nan, zero, maxulp=maxulp)) assert_raises(AssertionError, lambda: assert_array_max_ulp(nan, nzero, maxulp=maxulp)) class TestStringEqual: def test_simple(self): assert_string_equal("hello", "hello") assert_string_equal("hello\nmultiline", "hello\nmultiline") with pytest.raises(AssertionError) as exc_info: assert_string_equal("foo\nbar", "hello\nbar") msg = str(exc_info.value) assert_equal(msg, "Differences in strings:\n- foo\n+ hello") assert_raises(AssertionError, lambda: assert_string_equal("foo", "hello")) def test_regex(self): assert_string_equal("a+*b", "a+*b") assert_raises(AssertionError, lambda: assert_string_equal("aaa", "a+b")) def assert_warn_len_equal(mod, n_in_context, py34=None, py37=None): try: mod_warns = mod.__warningregistry__ except AttributeError: # the lack of a __warningregistry__ # attribute means that no warning has # occurred; this can be triggered in # a parallel test scenario, while in # a serial test scenario an initial # warning (and therefore the attribute) # are always created first mod_warns = {} num_warns = len(mod_warns) # Python 3.4 appears to clear any pre-existing warnings of the same type, # when raising warnings inside a catch_warnings block. So, there is a # warning generated by the tests within the context manager, but no # previous warnings. if 'version' in mod_warns: # Python 3 adds a 'version' entry to the registry, # do not count it. num_warns -= 1 # Behavior of warnings is Python version dependent. Adjust the # expected result to compensate. In particular, Python 3.7 does # not make an entry for ignored warnings. if sys.version_info[:2] >= (3, 7): if py37 is not None: n_in_context = py37 elif sys.version_info[:2] >= (3, 4): if py34 is not None: n_in_context = py34 assert_equal(num_warns, n_in_context) def test_warn_len_equal_call_scenarios(): # assert_warn_len_equal is called under # varying circumstances depending on serial # vs. parallel test scenarios; this test # simply aims to probe both code paths and # check that no assertion is uncaught # parallel scenario -- no warning issued yet class mod: pass mod_inst = mod() assert_warn_len_equal(mod=mod_inst, n_in_context=0) # serial test scenario -- the __warningregistry__ # attribute should be present class mod: def __init__(self): self.__warningregistry__ = {'warning1':1, 'warning2':2} mod_inst = mod() assert_warn_len_equal(mod=mod_inst, n_in_context=2) def _get_fresh_mod(): # Get this module, with warning registry empty my_mod = sys.modules[__name__] try: my_mod.__warningregistry__.clear() except AttributeError: # will not have a __warningregistry__ unless warning has been # raised in the module at some point pass return my_mod def test_clear_and_catch_warnings(): # Initial state of module, no warnings my_mod = _get_fresh_mod() assert_equal(getattr(my_mod, '__warningregistry__', {}), {}) with clear_and_catch_warnings(modules=[my_mod]): warnings.simplefilter('ignore') warnings.warn('Some warning') assert_equal(my_mod.__warningregistry__, {}) # Without specified modules, don't clear warnings during context # Python 3.7 catch_warnings doesn't make an entry for 'ignore'. with clear_and_catch_warnings(): warnings.simplefilter('ignore') warnings.warn('Some warning') assert_warn_len_equal(my_mod, 1, py37=0) # Confirm that specifying module keeps old warning, does not add new with clear_and_catch_warnings(modules=[my_mod]): warnings.simplefilter('ignore') warnings.warn('Another warning') assert_warn_len_equal(my_mod, 1, py37=0) # Another warning, no module spec does add to warnings dict, except on # Python 3.4 (see comments in `assert_warn_len_equal`) # Python 3.7 catch_warnings doesn't make an entry for 'ignore'. with clear_and_catch_warnings(): warnings.simplefilter('ignore') warnings.warn('Another warning') assert_warn_len_equal(my_mod, 2, py34=1, py37=0) def test_suppress_warnings_module(): # Initial state of module, no warnings my_mod = _get_fresh_mod() assert_equal(getattr(my_mod, '__warningregistry__', {}), {}) def warn_other_module(): # Apply along axis is implemented in python; stacklevel=2 means # we end up inside its module, not ours. def warn(arr): warnings.warn("Some warning 2", stacklevel=2) return arr np.apply_along_axis(warn, 0, [0]) # Test module based warning suppression: assert_warn_len_equal(my_mod, 0) with suppress_warnings() as sup: sup.record(UserWarning) # suppress warning from other module (may have .pyc ending), # if apply_along_axis is moved, had to be changed. sup.filter(module=np.lib.shape_base) warnings.warn("Some warning") warn_other_module() # Check that the suppression did test the file correctly (this module # got filtered) assert_equal(len(sup.log), 1) assert_equal(sup.log[0].message.args[0], "Some warning") assert_warn_len_equal(my_mod, 0, py37=0) sup = suppress_warnings() # Will have to be changed if apply_along_axis is moved: sup.filter(module=my_mod) with sup: warnings.warn('Some warning') assert_warn_len_equal(my_mod, 0) # And test repeat works: sup.filter(module=my_mod) with sup: warnings.warn('Some warning') assert_warn_len_equal(my_mod, 0) # Without specified modules, don't clear warnings during context # Python 3.7 does not add ignored warnings. with suppress_warnings(): warnings.simplefilter('ignore') warnings.warn('Some warning') assert_warn_len_equal(my_mod, 1, py37=0) def test_suppress_warnings_type(): # Initial state of module, no warnings my_mod = _get_fresh_mod() assert_equal(getattr(my_mod, '__warningregistry__', {}), {}) # Test module based warning suppression: with suppress_warnings() as sup: sup.filter(UserWarning) warnings.warn('Some warning') assert_warn_len_equal(my_mod, 0) sup = suppress_warnings() sup.filter(UserWarning) with sup: warnings.warn('Some warning') assert_warn_len_equal(my_mod, 0) # And test repeat works: sup.filter(module=my_mod) with sup: warnings.warn('Some warning') assert_warn_len_equal(my_mod, 0) # Without specified modules, don't clear warnings during context # Python 3.7 does not add ignored warnings. with suppress_warnings(): warnings.simplefilter('ignore') warnings.warn('Some warning') assert_warn_len_equal(my_mod, 1, py37=0) def test_suppress_warnings_decorate_no_record(): sup = suppress_warnings() sup.filter(UserWarning) @sup def warn(category): warnings.warn('Some warning', category) with warnings.catch_warnings(record=True) as w: warnings.simplefilter("always") warn(UserWarning) # should be supppressed warn(RuntimeWarning) assert_equal(len(w), 1) def test_suppress_warnings_record(): sup = suppress_warnings() log1 = sup.record() with sup: log2 = sup.record(message='Some other warning 2') sup.filter(message='Some warning') warnings.warn('Some warning') warnings.warn('Some other warning') warnings.warn('Some other warning 2') assert_equal(len(sup.log), 2) assert_equal(len(log1), 1) assert_equal(len(log2),1) assert_equal(log2[0].message.args[0], 'Some other warning 2') # Do it again, with the same context to see if some warnings survived: with sup: log2 = sup.record(message='Some other warning 2') sup.filter(message='Some warning') warnings.warn('Some warning') warnings.warn('Some other warning') warnings.warn('Some other warning 2') assert_equal(len(sup.log), 2) assert_equal(len(log1), 1) assert_equal(len(log2), 1) assert_equal(log2[0].message.args[0], 'Some other warning 2') # Test nested: with suppress_warnings() as sup: sup.record() with suppress_warnings() as sup2: sup2.record(message='Some warning') warnings.warn('Some warning') warnings.warn('Some other warning') assert_equal(len(sup2.log), 1) assert_equal(len(sup.log), 1) def test_suppress_warnings_forwarding(): def warn_other_module(): # Apply along axis is implemented in python; stacklevel=2 means # we end up inside its module, not ours. def warn(arr): warnings.warn("Some warning", stacklevel=2) return arr np.apply_along_axis(warn, 0, [0]) with suppress_warnings() as sup: sup.record() with suppress_warnings("always"): for i in range(2): warnings.warn("Some warning") assert_equal(len(sup.log), 2) with suppress_warnings() as sup: sup.record() with suppress_warnings("location"): for i in range(2): warnings.warn("Some warning") warnings.warn("Some warning") assert_equal(len(sup.log), 2) with suppress_warnings() as sup: sup.record() with suppress_warnings("module"): for i in range(2): warnings.warn("Some warning") warnings.warn("Some warning") warn_other_module() assert_equal(len(sup.log), 2) with suppress_warnings() as sup: sup.record() with suppress_warnings("once"): for i in range(2): warnings.warn("Some warning") warnings.warn("Some other warning") warn_other_module() assert_equal(len(sup.log), 2) def test_tempdir(): with tempdir() as tdir: fpath = os.path.join(tdir, 'tmp') with open(fpath, 'w'): pass assert_(not os.path.isdir(tdir)) raised = False try: with tempdir() as tdir: raise ValueError() except ValueError: raised = True assert_(raised) assert_(not os.path.isdir(tdir)) def test_temppath(): with temppath() as fpath: with open(fpath, 'w'): pass assert_(not os.path.isfile(fpath)) raised = False try: with temppath() as fpath: raise ValueError() except ValueError: raised = True assert_(raised) assert_(not os.path.isfile(fpath)) class my_cacw(clear_and_catch_warnings): class_modules = (sys.modules[__name__],) def test_clear_and_catch_warnings_inherit(): # Test can subclass and add default modules my_mod = _get_fresh_mod() with my_cacw(): warnings.simplefilter('ignore') warnings.warn('Some warning') assert_equal(my_mod.__warningregistry__, {}) @pytest.mark.skipif(not HAS_REFCOUNT, reason="Python lacks refcounts") class TestAssertNoGcCycles: """ Test assert_no_gc_cycles """ def test_passes(self): def no_cycle(): b = [] b.append([]) return b with assert_no_gc_cycles(): no_cycle() assert_no_gc_cycles(no_cycle) def test_asserts(self): def make_cycle(): a = [] a.append(a) a.append(a) return a with assert_raises(AssertionError): with assert_no_gc_cycles(): make_cycle() with assert_raises(AssertionError): assert_no_gc_cycles(make_cycle) @pytest.mark.slow def test_fails(self): """ Test that in cases where the garbage cannot be collected, we raise an error, instead of hanging forever trying to clear it. """ class ReferenceCycleInDel: """ An object that not only contains a reference cycle, but creates new cycles whenever it's garbage-collected and its __del__ runs """ make_cycle = True def __init__(self): self.cycle = self def __del__(self): # break the current cycle so that `self` can be freed self.cycle = None if ReferenceCycleInDel.make_cycle: # but create a new one so that the garbage collector has more # work to do. ReferenceCycleInDel() try: w = weakref.ref(ReferenceCycleInDel()) try: with assert_raises(RuntimeError): # this will be unable to get a baseline empty garbage assert_no_gc_cycles(lambda: None) except AssertionError: # the above test is only necessary if the GC actually tried to free # our object anyway, which python 2.7 does not. if w() is not None: pytest.skip("GC does not call __del__ on cyclic objects") raise finally: # make sure that we stop creating reference cycles ReferenceCycleInDel.make_cycle = False