Create New Item
Item Type
File
Folder
Item Name
Search file in folder and subfolders...
Are you sure want to rename?
File Manager
/
admin
/
installer
/
css
/
sass
/
sym404
/
root
/
usr
/
local
/
lib64
/
python3.6
/
site-packages
/
scipy
/
_lib
/
tests
:
test__util.py
Advanced Search
Upload
New Item
Settings
Back
Back Up
Advanced Editor
Save
from multiprocessing import Pool from multiprocessing.pool import Pool as PWL import os import math import numpy as np from numpy.testing import assert_equal, assert_ import pytest from pytest import raises as assert_raises, deprecated_call import scipy from scipy._lib._util import (_aligned_zeros, check_random_state, MapWrapper, getfullargspec_no_self, FullArgSpec, rng_integers) def test__aligned_zeros(): niter = 10 def check(shape, dtype, order, align): err_msg = repr((shape, dtype, order, align)) x = _aligned_zeros(shape, dtype, order, align=align) if align is None: align = np.dtype(dtype).alignment assert_equal(x.__array_interface__['data'][0] % align, 0) if hasattr(shape, '__len__'): assert_equal(x.shape, shape, err_msg) else: assert_equal(x.shape, (shape,), err_msg) assert_equal(x.dtype, dtype) if order == "C": assert_(x.flags.c_contiguous, err_msg) elif order == "F": if x.size > 0: # Size-0 arrays get invalid flags on NumPy 1.5 assert_(x.flags.f_contiguous, err_msg) elif order is None: assert_(x.flags.c_contiguous, err_msg) else: raise ValueError() # try various alignments for align in [1, 2, 3, 4, 8, 16, 32, 64, None]: for n in [0, 1, 3, 11]: for order in ["C", "F", None]: for dtype in [np.uint8, np.float64]: for shape in [n, (1, 2, 3, n)]: for j in range(niter): check(shape, dtype, order, align) def test_check_random_state(): # If seed is None, return the RandomState singleton used by np.random. # If seed is an int, return a new RandomState instance seeded with seed. # If seed is already a RandomState instance, return it. # Otherwise raise ValueError. rsi = check_random_state(1) assert_equal(type(rsi), np.random.RandomState) rsi = check_random_state(rsi) assert_equal(type(rsi), np.random.RandomState) rsi = check_random_state(None) assert_equal(type(rsi), np.random.RandomState) assert_raises(ValueError, check_random_state, 'a') if hasattr(np.random, 'Generator'): # np.random.Generator is only available in NumPy >= 1.17 rg = np.random.Generator(np.random.PCG64()) rsi = check_random_state(rg) assert_equal(type(rsi), np.random.Generator) def test_getfullargspec_no_self(): p = MapWrapper(1) argspec = getfullargspec_no_self(p.__init__) assert_equal(argspec, FullArgSpec(['pool'], None, None, (1,), [], None, {})) argspec = getfullargspec_no_self(p.__call__) assert_equal(argspec, FullArgSpec(['func', 'iterable'], None, None, None, [], None, {})) class _rv_generic(object): def _rvs(self, a, b=2, c=3, *args, size=None, **kwargs): return None rv_obj = _rv_generic() argspec = getfullargspec_no_self(rv_obj._rvs) assert_equal(argspec, FullArgSpec(['a', 'b', 'c'], 'args', 'kwargs', (2, 3), ['size'], {'size': None}, {})) def test_mapwrapper_serial(): in_arg = np.arange(10.) out_arg = np.sin(in_arg) p = MapWrapper(1) assert_(p._mapfunc is map) assert_(p.pool is None) assert_(p._own_pool is False) out = list(p(np.sin, in_arg)) assert_equal(out, out_arg) with assert_raises(RuntimeError): p = MapWrapper(0) def test_pool(): with Pool(2) as p: p.map(math.sin, [1,2,3, 4]) def test_mapwrapper_parallel(): in_arg = np.arange(10.) out_arg = np.sin(in_arg) with MapWrapper(2) as p: out = p(np.sin, in_arg) assert_equal(list(out), out_arg) assert_(p._own_pool is True) assert_(isinstance(p.pool, PWL)) assert_(p._mapfunc is not None) # the context manager should've closed the internal pool # check that it has by asking it to calculate again. with assert_raises(Exception) as excinfo: p(np.sin, in_arg) assert_(excinfo.type is ValueError) # can also set a PoolWrapper up with a map-like callable instance try: p = Pool(2) q = MapWrapper(p.map) assert_(q._own_pool is False) q.close() # closing the PoolWrapper shouldn't close the internal pool # because it didn't create it out = p.map(np.sin, in_arg) assert_equal(list(out), out_arg) finally: p.close() # get our custom ones and a few from the "import *" cases @pytest.mark.parametrize( 'key', ('fft', 'ifft', 'diag', 'arccos', 'randn', 'rand', 'array')) def test_numpy_deprecation(key): """Test that 'from numpy import *' functions are deprecated.""" if key in ('fft', 'ifft', 'diag', 'arccos'): arg = [1.0, 0.] elif key == 'finfo': arg = float else: arg = 2 func = getattr(scipy, key) if key == 'fft': match = r'scipy\.fft.*deprecated.*1.5.0.*' else: match = r'scipy\.%s is deprecated.*2\.0\.0' % key with deprecated_call(match=match) as dep: func(arg) # deprecated # in case we catch more than one dep warning fnames = [os.path.splitext(d.filename)[0] for d in dep.list] basenames = [os.path.basename(fname) for fname in fnames] assert 'test__util' in basenames if key in ('rand', 'randn'): root = np.random elif key in ('fft', 'ifft'): root = np.fft else: root = np func_np = getattr(root, key) func_np(arg) # not deprecated assert func_np is not func # classes should remain classes if isinstance(func_np, type): assert isinstance(func, type) def test_numpy_deprecation_functionality(): # Check that the deprecation wrappers don't break basic NumPy # functionality with deprecated_call(): x = scipy.array([1, 2, 3], dtype=scipy.float64) assert x.dtype == scipy.float64 assert x.dtype == np.float64 x = scipy.finfo(scipy.float32) assert x.eps == np.finfo(np.float32).eps assert scipy.float64 == np.float64 assert issubclass(np.float64, scipy.float64) def test_rng_integers(): rng = np.random.RandomState() # test that numbers are inclusive of high point arr = rng_integers(rng, low=2, high=5, size=100, endpoint=True) assert np.max(arr) == 5 assert np.min(arr) == 2 assert arr.shape == (100, ) # test that numbers are inclusive of high point arr = rng_integers(rng, low=5, size=100, endpoint=True) assert np.max(arr) == 5 assert np.min(arr) == 0 assert arr.shape == (100, ) # test that numbers are exclusive of high point arr = rng_integers(rng, low=2, high=5, size=100, endpoint=False) assert np.max(arr) == 4 assert np.min(arr) == 2 assert arr.shape == (100, ) # test that numbers are exclusive of high point arr = rng_integers(rng, low=5, size=100, endpoint=False) assert np.max(arr) == 4 assert np.min(arr) == 0 assert arr.shape == (100, ) # now try with np.random.Generator try: rng = np.random.default_rng() except AttributeError: return # test that numbers are inclusive of high point arr = rng_integers(rng, low=2, high=5, size=100, endpoint=True) assert np.max(arr) == 5 assert np.min(arr) == 2 assert arr.shape == (100, ) # test that numbers are inclusive of high point arr = rng_integers(rng, low=5, size=100, endpoint=True) assert np.max(arr) == 5 assert np.min(arr) == 0 assert arr.shape == (100, ) # test that numbers are exclusive of high point arr = rng_integers(rng, low=2, high=5, size=100, endpoint=False) assert np.max(arr) == 4 assert np.min(arr) == 2 assert arr.shape == (100, ) # test that numbers are exclusive of high point arr = rng_integers(rng, low=5, size=100, endpoint=False) assert np.max(arr) == 4 assert np.min(arr) == 0 assert arr.shape == (100, )